Generative Data Intelligence

Redirecting immune signaling with cytokine adaptors

Date:

Node: 4469244
  • Lippitz, B. E. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 14, e218–e228 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J.-C., Lee, K.-M., Kim, D.-W. & Heo, D. S. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J. Immunol. 172, 7335–7340 (2004).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • McKenzie, B. S., Kastelein, R. A. & Cua, D. J. Understanding the IL-23-IL-17 immune pathway. Trends Immunol. 27, 17–23 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atzeni, F. et al. Autoimmunity and anti-TNF-α agents. Ann. N. Y. Acad. Sci. 1051, 559–569 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Whibley, N. & Gaffen, S. L. Gut-busters: IL-17 ain’t afraid of no IL-23. Immunity 43, 620–622 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karaboga, İ., Demirtas, S. & Karaca, T. Investigation of the relationship between the TH17/IL-23 pathway and innate-adaptive immune system in TNBS-induced colitis in rats. Iran. J. Basic Med. Sci. 20, 870–879 (2017).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Becker, C. et al. Cell-dependent experimental colitis 1. J. Immunol. 12, 17 (2009).

    MATH 

    Google Scholar
     

  • Aghamohamadi, E. et al. Gene expression analysis of intestinal IL-8, IL-17 A and IL-10 in patients with celiac and inflammatory bowel diseases. Mol. Biol. Rep. 49, 6085–6091 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Teng, M. W. L. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Donnelly, R. P., Young, H. A. & Rosenberg, A. S. An overview of cytokines and cytokine antagonists as therapeutic agents. Ann. N. Y. Acad. Sci. 1182, 1–13 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vassilopoulos, D. & Calabrese, L. H. Management of rheumatic disease with comorbid HBV or HCV infection. Nat. Rev. Rheumatol. 8, 348–357 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lin, P. L., Plessner, H. L., Voitenok, N. N. & Flynn, J. A. L. Tumor necrosis factor and tuberculosis. J. Investig. Dermatol. Symp. Proc. 12, 22–25 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strangfeld, A. et al. Risk of herpes zoster in patients with rheumatoid arthritis treated with anti–TNF-α agents. Jama. 301, 737–744 (2009).

  • Gisbert, J. P., Marín, A. C. & Chaparro, M. Systematic review: factors associated with relapse of inflammatory bowel disease after discontinuation of anti-TNF therapy. Aliment. Pharmacol. Ther. 42, 391–405 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brocq, O. et al. Effect of discontinuing TNFα antagonist therapy in patients with remission of rheumatoid arthritis. Joint Bone Spine 76, 350–355 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Saxton, R. A., Glassman, C. R. & Garcia, K. C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-022-00557-6 (2022).

  • Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4, 11–22 (2004).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Inst, N. C. Interferon Alfa Versus Chemotherapy for Chronic Myeloid Leukemia: a Meta-analysis of Seven Randomized Trials Chronic Myeloid Leukemia Trialists’ Collaborative Group * cal trials in chronic myeloid leukemia in a worldwide overview of all clinical randoml. J. Natl. Cancer Inst. 89, 1616–1620 (1997).

    Article 

    Google Scholar
     

  • Kennedy, L. B. & Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 70, 86–104 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Atkins, B. M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

  • Rider, P., Carmi, Y. & Cohen, I. Biologics for targeting inflammatory cytokines, clinical uses, and limitations. Int. J. Cell Biol. 2016, 9259646 (2016).

  • Pasche, N., Wulhfard, S., Pretto, F., Carugati, E. & Neri, D. The antibody-based delivery of interleukin-12 to the tumor neovasculature eradicates murine models of cancer in combination with paclitaxel. Clin. Cancer Res. 18, 4092–4103 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • VanDyke, D. et al. Engineered human cytokine/antibody fusion proteins expand regulatory T cells and confer autoimmune disease protection. Cell Rep. 41, 1–53 (2022).

    Article 

    Google Scholar
     

  • Puskas, J. et al. Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases. Immunology 133, 206–220 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mansurov, A. et al. Masking the immunotoxicity of interleukin-12 by fusing it with a domain of its receptor via a tumour-protease-cleavable linker. Nat. Biomed. Eng. 6, 819–829 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gaggero, S. et al. IL-2 Is Inactivated by the Acidic PH Environment of Tumors Enabling Engineering of a PH-Selective Mutein. https://www.science.org (2022).

  • Glassman, C. R. et al. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 184, 983–999.e24 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Saxton, R. A. et al. Structure-based decoupling of the pro-and anti-inflammatory functions of interleukin-10. Science 371, eabc8433 (2021).

  • Grütter, C. et al. A cytokine-neutralizing antibody as a structural mimetic of 2 receptor interactions. Proc. Natl. Acad. Sci. USA 105, 20251–20256 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Moulin, A. et al. Structures of a pan-specific antagonist antibody complexed to different isoforms of TGFβ reveal structural plasticity of antibody-antigen interactions. Protein Sci. 23, 1698–1707 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stevenson, J. P. et al. Immunological effects of the TGFβ-blocking antibody GC1008 in malignant pleural mesothelioma patients. Oncoimmunology 2, e26218 (2013).

  • Yen, M. et al. Facile discovery of surrogate cytokine agonists. Cell 185, 1414–1430.e19 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ganesh, K. & Massagué, J. TGF-β inhibition and immunotherapy: checkmate. Immunity 48, 626–628 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. BCL6 promotes a stem-like CD8+ T cell program in cancer via antagonizing BLIMP1. Sci. Immunol. 8, 1–17 (2023).

    Article 

    Google Scholar
     

  • Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, B. et al. Predictive value of IL-18 and IL-10 in the prognosis of patients with colorectal cancer. Oncol. Lett. 18, 713–719 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stanilov, N., Miteva, L., Deliysky, T., Jovchev, J. & Stanilova, S. Advanced colorectal cancer is associated with enhanced IL-23 and IL-10 serum levels. Lab. Med. 41, 159–163 (2010).

    Article 

    Google Scholar
     

  • Tze, L. E. et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10 – driven MARCH1-mediated ubiquitination and degradation. J. Exp. Med. 208, 149–165 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chattopadhyay, G. & Shevach, E. M. Antigen-specific induced T regulatory cells impair dendritic cell function via an IL-10/MARCH1-dependent mechanism. J. Immunol. 191, 5875–5884 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Josephson, K. et al. Noncompetitive antibody neutralization of IL-10 revealed by protein engineering and X-ray crystallography. Structure 10, 981–987 (2002).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kikly, K., Liu, L., Na, S. & Sedgwick, J. D. The IL-23/Th17 axis: therapeutic targets for autoimmune inflammation. Curr. Opin. Immunol. 18, 670–675 (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jin, W. & Dong, C. IL-17 cytokines in immunity and inflammation. Emerg. Microbes Infect. 2, 0 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Huangfu, L., Li, R., Huang, Y. & Wang, S. The IL-17 family in diseases: from bench to bedside. Signal Transduct. Target. Ther. 8, 402 (2023).

  • Fiorentino, D. F. et al. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147, 3815–3822 (1991).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ouyang, W. & O’Garra, A. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity 50, 871–891 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedorak, R. N. et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. Gastroenterology 119, 1473–1482 (2000).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Neumann, C., Scheffold, A. & Rutz, S. Functions and regulation of T cell-derived interleukin-10. Semin. Immunol. 44, 101344 (2019).

  • Wang, X., Wong, K., Ouyang, W. & Rutz, S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb. Perspect. Biol. 11, 1–30 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Wilson, S. C. et al. Organizing structural principles of the IL-17 ligand–receptor axis. Nature 609, 622–629 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Goepfert, A. et al. IL-17-induced dimerization of IL-17RA drives the formation of the IL-17 signalosome to potentiate signaling. Cell Rep. 41, 111489 (2022).

  • Gerhardt, S. et al. Structure of IL-17A in complex with a potent, fully human neutralizing antibody. J. Mol. Biol. 394, 905–921 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chang, Z. L. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14, 317–324 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Prosser, M. E., Brown, C. E., Shami, A. F., Forman, S. J. & Jensen, M. C. Tumor PD-L1 co-stimulates primary human CD8+ cytotoxic T cells modified to express a PD1: CD28 chimeric receptor. Mol. Immunol. 51, 263–272 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, L. et al. Co-expression of a PD-L1-specific chimeric switch receptor augments the efficacy and persistence of CAR T cells via the CD70-CD27 axis. Nat. Commun. 13, 6051 (2022).

  • Bell, M. & Gottschalk, S. Engineered cytokine signaling to improve CAR T cell effector function. Front. Immunol. https://doi.org/10.3389/fimmu.2021.684642 (2021).

  • Nerviani, A. et al. IL-23 skin and joint profiling in psoriatic arthritis: novel perspectives in understanding clinical responses to IL-23 inhibitors. Ann. Rheum. Dis. 80, 591–597 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desmyter, A. et al. Neutralization of human interleukin 23 by multivalent nanobodies explained by the structure of cytokine–nanobody complex. Front. Immunol. 8, 1–10 (2017).

    Article 

    Google Scholar
     

  • Kostareva, O. et al. Two epitope regions revealed in the complex of IL-17A and anti-IL-17A VHH domain. Int. J. Mol. Sci. 23, 14904 (2022).

  • Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Related articles

    spot_img

    Recent articles

    spot_img