
Lippitz, B. E. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 14, e218–e228 (2013).
Lee, J.-C., Lee, K.-M., Kim, D.-W. & Heo, D. S. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J. Immunol. 172, 7335–7340 (2004).
McKenzie, B. S., Kastelein, R. A. & Cua, D. J. Understanding the IL-23-IL-17 immune pathway. Trends Immunol. 27, 17–23 (2006).
Atzeni, F. et al. Autoimmunity and anti-TNF-α agents. Ann. N. Y. Acad. Sci. 1051, 559–569 (2005).
Whibley, N. & Gaffen, S. L. Gut-busters: IL-17 ain’t afraid of no IL-23. Immunity 43, 620–622 (2015).
Karaboga, İ., Demirtas, S. & Karaca, T. Investigation of the relationship between the TH17/IL-23 pathway and innate-adaptive immune system in TNBS-induced colitis in rats. Iran. J. Basic Med. Sci. 20, 870–879 (2017).
Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).
Becker, C. et al. Cell-dependent experimental colitis 1. J. Immunol. 12, 17 (2009).
Aghamohamadi, E. et al. Gene expression analysis of intestinal IL-8, IL-17 A and IL-10 in patients with celiac and inflammatory bowel diseases. Mol. Biol. Rep. 49, 6085–6091 (2022).
Teng, M. W. L. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).
Donnelly, R. P., Young, H. A. & Rosenberg, A. S. An overview of cytokines and cytokine antagonists as therapeutic agents. Ann. N. Y. Acad. Sci. 1182, 1–13 (2009).
Vassilopoulos, D. & Calabrese, L. H. Management of rheumatic disease with comorbid HBV or HCV infection. Nat. Rev. Rheumatol. 8, 348–357 (2012).
Lin, P. L., Plessner, H. L., Voitenok, N. N. & Flynn, J. A. L. Tumor necrosis factor and tuberculosis. J. Investig. Dermatol. Symp. Proc. 12, 22–25 (2007).
Strangfeld, A. et al. Risk of herpes zoster in patients with rheumatoid arthritis treated with anti–TNF-α agents. Jama. 301, 737–744 (2009).
Gisbert, J. P., Marín, A. C. & Chaparro, M. Systematic review: factors associated with relapse of inflammatory bowel disease after discontinuation of anti-TNF therapy. Aliment. Pharmacol. Ther. 42, 391–405 (2015).
Brocq, O. et al. Effect of discontinuing TNFα antagonist therapy in patients with remission of rheumatoid arthritis. Joint Bone Spine 76, 350–355 (2009).
Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).
Saxton, R. A., Glassman, C. R. & Garcia, K. C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-022-00557-6 (2022).
Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4, 11–22 (2004).
Inst, N. C. Interferon Alfa Versus Chemotherapy for Chronic Myeloid Leukemia: a Meta-analysis of Seven Randomized Trials Chronic Myeloid Leukemia Trialists’ Collaborative Group * cal trials in chronic myeloid leukemia in a worldwide overview of all clinical randoml. J. Natl. Cancer Inst. 89, 1616–1620 (1997).
Kennedy, L. B. & Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 70, 86–104 (2020).
Atkins, B. M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).
Rider, P., Carmi, Y. & Cohen, I. Biologics for targeting inflammatory cytokines, clinical uses, and limitations. Int. J. Cell Biol. 2016, 9259646 (2016).
Pasche, N., Wulhfard, S., Pretto, F., Carugati, E. & Neri, D. The antibody-based delivery of interleukin-12 to the tumor neovasculature eradicates murine models of cancer in combination with paclitaxel. Clin. Cancer Res. 18, 4092–4103 (2012).
VanDyke, D. et al. Engineered human cytokine/antibody fusion proteins expand regulatory T cells and confer autoimmune disease protection. Cell Rep. 41, 1–53 (2022).
Puskas, J. et al. Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases. Immunology 133, 206–220 (2011).
Mansurov, A. et al. Masking the immunotoxicity of interleukin-12 by fusing it with a domain of its receptor via a tumour-protease-cleavable linker. Nat. Biomed. Eng. 6, 819–829 (2022).
Gaggero, S. et al. IL-2 Is Inactivated by the Acidic PH Environment of Tumors Enabling Engineering of a PH-Selective Mutein. https://www.science.org (2022).
Glassman, C. R. et al. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 184, 983–999.e24 (2021).
Saxton, R. A. et al. Structure-based decoupling of the pro-and anti-inflammatory functions of interleukin-10. Science 371, eabc8433 (2021).
Grütter, C. et al. A cytokine-neutralizing antibody as a structural mimetic of 2 receptor interactions. Proc. Natl. Acad. Sci. USA 105, 20251–20256 (2008).
Moulin, A. et al. Structures of a pan-specific antagonist antibody complexed to different isoforms of TGFβ reveal structural plasticity of antibody-antigen interactions. Protein Sci. 23, 1698–1707 (2014).
Stevenson, J. P. et al. Immunological effects of the TGFβ-blocking antibody GC1008 in malignant pleural mesothelioma patients. Oncoimmunology 2, e26218 (2013).
Yen, M. et al. Facile discovery of surrogate cytokine agonists. Cell 185, 1414–1430.e19 (2022).
Ganesh, K. & Massagué, J. TGF-β inhibition and immunotherapy: checkmate. Immunity 48, 626–628 (2018).
Sun, Q. et al. BCL6 promotes a stem-like CD8+ T cell program in cancer via antagonizing BLIMP1. Sci. Immunol. 8, 1–17 (2023).
Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).
Li, B. et al. Predictive value of IL-18 and IL-10 in the prognosis of patients with colorectal cancer. Oncol. Lett. 18, 713–719 (2019).
Stanilov, N., Miteva, L., Deliysky, T., Jovchev, J. & Stanilova, S. Advanced colorectal cancer is associated with enhanced IL-23 and IL-10 serum levels. Lab. Med. 41, 159–163 (2010).
Tze, L. E. et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10 – driven MARCH1-mediated ubiquitination and degradation. J. Exp. Med. 208, 149–165 (2011).
Chattopadhyay, G. & Shevach, E. M. Antigen-specific induced T regulatory cells impair dendritic cell function via an IL-10/MARCH1-dependent mechanism. J. Immunol. 191, 5875–5884 (2013).
Josephson, K. et al. Noncompetitive antibody neutralization of IL-10 revealed by protein engineering and X-ray crystallography. Structure 10, 981–987 (2002).
Kikly, K., Liu, L., Na, S. & Sedgwick, J. D. The IL-23/Th17 axis: therapeutic targets for autoimmune inflammation. Curr. Opin. Immunol. 18, 670–675 (2006).
Jin, W. & Dong, C. IL-17 cytokines in immunity and inflammation. Emerg. Microbes Infect. 2, 0 (2013).
Huangfu, L., Li, R., Huang, Y. & Wang, S. The IL-17 family in diseases: from bench to bedside. Signal Transduct. Target. Ther. 8, 402 (2023).
Fiorentino, D. F. et al. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147, 3815–3822 (1991).
Ouyang, W. & O’Garra, A. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity 50, 871–891 (2019).
Fedorak, R. N. et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. Gastroenterology 119, 1473–1482 (2000).
Neumann, C., Scheffold, A. & Rutz, S. Functions and regulation of T cell-derived interleukin-10. Semin. Immunol. 44, 101344 (2019).
Wang, X., Wong, K., Ouyang, W. & Rutz, S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb. Perspect. Biol. 11, 1–30 (2019).
Wilson, S. C. et al. Organizing structural principles of the IL-17 ligand–receptor axis. Nature 609, 622–629 (2022).
Goepfert, A. et al. IL-17-induced dimerization of IL-17RA drives the formation of the IL-17 signalosome to potentiate signaling. Cell Rep. 41, 111489 (2022).
Gerhardt, S. et al. Structure of IL-17A in complex with a potent, fully human neutralizing antibody. J. Mol. Biol. 394, 905–921 (2009).
Chang, Z. L. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14, 317–324 (2018).
Prosser, M. E., Brown, C. E., Shami, A. F., Forman, S. J. & Jensen, M. C. Tumor PD-L1 co-stimulates primary human CD8+ cytotoxic T cells modified to express a PD1: CD28 chimeric receptor. Mol. Immunol. 51, 263–272 (2012).
Qin, L. et al. Co-expression of a PD-L1-specific chimeric switch receptor augments the efficacy and persistence of CAR T cells via the CD70-CD27 axis. Nat. Commun. 13, 6051 (2022).
Bell, M. & Gottschalk, S. Engineered cytokine signaling to improve CAR T cell effector function. Front. Immunol. https://doi.org/10.3389/fimmu.2021.684642 (2021).
Nerviani, A. et al. IL-23 skin and joint profiling in psoriatic arthritis: novel perspectives in understanding clinical responses to IL-23 inhibitors. Ann. Rheum. Dis. 80, 591–597 (2021).
Desmyter, A. et al. Neutralization of human interleukin 23 by multivalent nanobodies explained by the structure of cytokine–nanobody complex. Front. Immunol. 8, 1–10 (2017).
Kostareva, O. et al. Two epitope regions revealed in the complex of IL-17A and anti-IL-17A VHH domain. Int. J. Mol. Sci. 23, 14904 (2022).
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41467-025-57681-1